Length of Chest Compression Pauses is Reduced with Cardiac Rhythm Analysis and Charging During Chest Compressions

Robert Partridge, MD, MPH
Emerson Hospital, Concord MA
Adjunct Associate Professor
Department of Emergency Medicine
Brown Medical School
January 16, 2014

Co-Investigators
• Qing Tan
• Annemarie Silver
• Michael Riley
• Fred Geheb
• Liliana Bellini
• Richard Raymond

Background
• Prolonged chest compression interruptions before and after a defibrillation shock:
 – Lower chance of shock success
 – Reduce patient survival
Background

• Chest compressions introduce artifact in cardiac waveform

Hypothesis

• Compression pauses can be shortened with use of Analysis During Compressions with Fast Reconfirmation (ADC-FR) compared with standard AED operation.

ADC-FR Technology

• Analysis During Compressions with Fast Reconfirmation (ADC-FR)
 – Low pass subtraction filtering
 – Automated rhythm analysis
 – Automated Defibrillator Charging
 – Brief reconfirmation analysis
• Occurs while compressions are on-going
ADC-FR Technology

Standard AED Mode
- Start CPR
- CPR interval
- ECG analysis and charging
- Pause CPR
- Ready to shock
- Press Charge and Ready to Shock

ACD-FR Mode
- Start CPR
- CPR interval
- ECG analysis
- Automated rhythm analysis
- Pause CPR
- Ready to shock

Methods
• ADC-FR Accuracy
 – Tested retrospectively using database of ECG rhythms
• ADC-FR in Simulated Cardiac Arrest Resuscitations
 – Prospective randomized crossover design

Methods
• 32 basic life support (BLS) certified providers worked in pairs
• Performed two trials of simulated cardiac resuscitation with a chest compression sensing defibrillator
• Each participant pair was randomized to perform a trial of 8 two-minute compression intervals
 – One trial in AED mode
 – One trial in ADC-FR mode
Methods

- A cardiac rhythm generator randomly assigned 4 shockable and 4 non-shockable rhythms for analysis during each compression interval.
- Subjects were advised to follow the defibrillator prompts, to defibrillate the rhythm if a “shock advised” was issued by the defibrillator, and to switch compressors every 2 intervals.
- Compression timing and quality data were reviewed using RescueNet Code Review (ZOLL Medical).
- Data were analyzed using descriptive statistics and paired t-tests.

Results

- ADC-FR Algorithm Accuracy
 - 629 records reviewed
 - 2059 ADC-FR advisories

<table>
<thead>
<tr>
<th>Rhythm</th>
<th>Sample size</th>
<th>Advising shockable</th>
<th>Advising non-shockable</th>
<th>Algorithm accuracy</th>
<th>Performance (CAD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VT</td>
<td>254</td>
<td>227</td>
<td>7</td>
<td>99.80%</td>
<td>50%</td>
</tr>
<tr>
<td>DCM/VT</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>100%</td>
<td>78%</td>
</tr>
<tr>
<td>NSR</td>
<td>43</td>
<td>0</td>
<td>43</td>
<td>100%</td>
<td>78%</td>
</tr>
<tr>
<td>MFI, VEF, and Mode-Algorithm, PCCs, Atrio</td>
<td>552</td>
<td>6</td>
<td>546</td>
<td>99.10%</td>
<td>78%</td>
</tr>
<tr>
<td>Atrio</td>
<td>552</td>
<td>2</td>
<td>550</td>
<td>98.73%</td>
<td>78%</td>
</tr>
<tr>
<td>Pac VF</td>
<td>318</td>
<td>21</td>
<td>316</td>
<td>96.80%</td>
<td>Report only</td>
</tr>
<tr>
<td>MVR VF</td>
<td>7</td>
<td>0</td>
<td>7</td>
<td>100%</td>
<td>Report only</td>
</tr>
</tbody>
</table>
Results

• Simulated Resuscitation

End of interval compression interruptions were significantly reduced with ADC-FR mode.

Limitations

• Performed in a simulated setting

• Clinical studies needed to confirm findings
Conclusions
ADC-FR technology in AED’s
- Accurate
- Reduces chest compression interruptions by 30% compared with standard AED
- Reduces interruptions during pre-shock period by almost 5 seconds

Questions?