The Use of Simulation in EMS Education & Training

C. Eric McCoy, MD, MPH
Director of Emergency Medical Services
Director of Simulation Education
Director of Medical Simulation Fellowships
Department of Emergency Medicine
UC Irvine School of Medicine
cmccoy@uci.edu

Objectives

• Describe a functional definition of simulation
 • Be familiar with a brief history of simulation in medical education

• Discuss benefits of simulation and rationale for use

• Describe a few areas of simulation in EMS education

No conflicts or disclosures
Simulation Defined

Simulation (SIM) encompasses any technology or process that re-creates a contextual background that allows a learner to make decisions, experience success, mistakes, receive feedback, and gain confidence in a learner-oriented environment that is void of patient risk.¹

Clinical Simulation - Laerdal

- Modern era of simulation has its origins in late 20th century
- Asmund Laerdal – Norwegian publisher and toy manufacturer
- Resusci-Anne® (1960s)

Clinical Simulation - Laerdal

- Encouraged by Norwegian anesthesiologist Dr. Bjorn Lind following Dr. Safar’s work on mouth-to-mouth resuscitation²⁻³
- Based on evidence of efficacy of closed chest massage, Dr. Safar convinced Laerdal to include an internal spring attached to chest wall to simulate compressions⁴⁻⁵
- Possibility for training for ABCs on a simulator was born⁶
Clinical Simulation – Sim One

- Starting point (mid 1960’s) for true computer controlled, mannequin simulators of entire patient\(^a\)\(^b\)
- Dr. Stephenson Abrahamson (engineer)
- Dr. Judson Denson (physician)
- USC
- Collab w/ Sierra Engineering and Aerojet General Corporation

Clinical Simulation – Sim One

- Supported by 3-year $270,000 grant from US Office of Edu
- 4,096 words
- Blinking eyes
- Pupils change size
- Jaw opening
- Breaths
- Heart beat
- BP
- Pulses
- Drug response
- Basic airway

Clinical Simulation – Sim One

- Failed to achieve acceptance
- Only 1 constructed
- Too expensive
- Apprenticeship model
- Too ahead of their time
Clinical Simulation - Harvey

- Full sized mannequin simulating 27 cardiac conditions
- Earliest example of modern concept of part-task trainer
- First demonstrated (1968) at AHA Scientific Sessions by Dr. Michael Gordon (U of Miami Medical School)11-12

Clinical Simulation - Harvey

- Displays
 - BP by auscultation
 - Bilateral JVP
 - Arterial pulses
 - Precordial impulses
 - Heart sounds in 4 classic areas
 - Breathing
- Studies showed enhanced confidence and ability to interpret cardiac findings on patients13,14
- Used to teach medical students, residents, physicians

Clinical Simulation - SP

- Standardized patients (SP)
- Patient actors to educate began in 196315
 - USC neurology 3rd year clerkship
 - Gynecology – teaching nl pelvic exam (1968)16
 - AAMC survey showed >3/4 schools using SPs (1993)
 - First required SP exam for US med students – Step II Clinical Skills – held in 2004 as part of licensing process

Clinical Simulation - HFS

- High-Fidelity Simulator/Simulation (HFS)
- 1980's high-fidelity simulator production resurrected
- Independently, two simulators developed
 - Same time
 - Opposite ends of the US
 - Stanford
 - University of Florida

Clinical Simulation - HFS

- Stanford Med School affiliated VA Palo Alto Health Care System: David Gaba et al.
- Developed simulator for investigating human performance in anesthesia (and safety)
 - CASE (Comprehensive Anesthesia Simulation Environment)
 - Mannequin placed in real OR w/ real equipment
 - Beginning of high realism
 - ACRM (Anesthesia Crisis Resource Management)
 - CASE system/software licensed and - sold to Medsim Ltd.
Clinical Simulation - HFS

Univ of Florida – Gainesville Anesthesia Simulator (GAS)
Developed by Dr. Michael Good & Dr. JS Gravenstein
Utilized to train anesthesia residents basic clinical skills
In contrast to CASE, software enables physiological changes both predefined and in response to actions of trainer/trainee
Licensed & ultimately controlled by METI Inc.

2000’s
Spread of Simulation

- Anesthesiology
- Internal medicine
- Pediatrics/neonatology
- Cardiology
- Radiology
- Trauma/Armed forces
- Nursing
- Emergency Medical Services/Disaster Medicine
- Emergency Medicine

Why use simulation?

- Provides a safe, supportive educational environment
- Allows learner to practice/develop skills w/o patient risk
- Encourages skill acquisition through experience
- Allows and stimulates reflection on performance

McCoy C, Menchine M, Anderson C, Kollen R, Langdorf M, Lotfipour S.

Rosen K.

Gordon J, Wilkerson W, Shaffer D, Armstrong E.

Kolb D.

Schon D.

Why use simulation?

- Tasks/scenarios can be created to demand
- Skills can be practiced repeatedly
- Training can be tailored to the individual
- Retention and accuracy are increased
- Transfer from classroom to real situation is enhanced
- Allows for the standardization of evaluation

Features and uses of high-fidelity medical simulations that lead to effective learning: a BEME systematic review

- Best Evidence Medical Education (BEME) review
- Synthesized evidenced addressing the question, “What are the features and uses of high-fidelity medical simulation that lead to most effective learning?”
- Analyzed 670 journal articles published over 34 years
- 109 articles sufficiently robust to be included in analysis
- Concluded that high-fidelity simulation facilitates learning under the right conditions, including . . .
"The research evidence is clear that high-fidelity medical simulations facilitate learning among trainees when used under the right conditions."\(^{24}\)
History of SIM in EMS

• Still in its infancy
• Origins of SIM in EMS is now
• Composed of scant literature in various topic areas

Simulation Use in Paramedic Education Research (SUPER): A Descriptive Study

SUPER Study

• Cross-sectional survey
• Characterized the use of simulation in initial paramedic education programs
• Provided snapshot of what sim resources programs have (or have access to) and how they are used
 • Faculty perceptions about simulation
 • What influences sim use
 • Faculty training, program characteristics, resources
SUPER Study

• Cross-sectional census survey of 638 paramedic programs
 • Accredited by the Commission on Accreditation of Allied Health Education Programs (CAAHEP), or
 • Holding a letter of review
• 56 multiple-choice and open-ended questions
• 389 valid responses (61%) response rate

SUPER Study: Sim Resources

• 100% [programs] have/access to trainers (97% use)
• 100% have/access simple manikins (92% use)
• 100% have/access to intermediate manikins (93% use)
• 91% have/access to advanced manikins (71% use)
• 31% of programs w/ sim equipment that sits idle/unused

Table 2: Reasons simulation equipment sits idle and unused

<table>
<thead>
<tr>
<th>Reason</th>
<th>n/N.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inadequate training</td>
<td>57 (28)</td>
</tr>
<tr>
<td>Inadequate personnel</td>
<td>29 (17)</td>
</tr>
<tr>
<td>Inadequate time</td>
<td>27 (14)</td>
</tr>
<tr>
<td>Inadequate technical resources</td>
<td>14 (7)</td>
</tr>
<tr>
<td>Other department will not allow</td>
<td>9 (7)</td>
</tr>
<tr>
<td>No priori trainee</td>
<td>9 (7)</td>
</tr>
<tr>
<td>Other</td>
<td>3 (2)</td>
</tr>
</tbody>
</table>

Reasons for idle equipment in the "other" category included "low enrollment," "staff untrained," "lack of evidence," "equipment that was broken or unavailable," and others.
“To ensure simulation is used effectively, programs must have the appropriate equipment, faculty training, and resources. If any of these elements is missing . . . programs are less likely to use simulation.”

SUPER Study

- Factors significantly associated w/ underuse of sim:
 - Faculty training
 - Equipment
 - Personnel
NAEMSE Vision Paper on Simulation in EMS Education

- **Intent:**
 - Help build a more complete body of knowledge regarding use of simulation in EMS
 - Uncover barriers to effective implementation
 - Outline recommendations for improvement

“Given an increased focus on patient safety, the need for standardized, on-demand educational opportunities to help ensure “road readiness,” and the ability to practice and hone skills in a controlled environment, simulation has become an increasingly important tool in EMS education and skill acquisition.”

Scope & Challenges of EMS Education

- Competencies required for EMS professions relatively consistent . . . education/training requirements aren’t
- Progress made toward standardizing EMS Education
 - National EMS Education Standards (2009)
 - Define min entry-level educational competencies for each level of EMS as identified in National EMS Scope of Practice Model
 - Outcomes-based approach has largely replaced the National Standard Curricula
 - Despite progress, inconsistent education/training/scope of practice remain a challenge of EMS education today
Scope & Challenges of EMS Education

- Faculty training
 - Must be proficient in instilling evidenced-based clin skills
 - Also in developing experiential learning activities that lead to true student mastery
- Faculty workload
 - Overworked with multiple responsibilities
 - ~40% report dissatisfaction w/ workload
- Access to clinical sites
 - Competition for access to diverse patient population
 - Competition for access to diverse procedural skill practice

Most significant challenge facing today’s EMS educators is likely increased diagnostic focus
- Requires EMS professional to adopt more complex roles
- Most prevalent is rise of Mobile Integrated Healthcare (MIH)
 - Community paramedicine
 - Requires honing evaluation and diagnosis skills
 - Requires increased knowledge base
 - Shifts emphasis from short-term emergency care to longer-term support and education
- Role necessitates additional training

EMS is increasing its value in the community – and risk

Barriers to implementing simulation
Barriers to implementing simulation

- Comment on SUPER study
 - Most paramedic programs w/ access to HFS (91%)
 - 78% called for more sim in their programs
 - Yet, only 71% of programs use them

- Disconnect exist between simulation resource acquisition and implementation . . . Consider the following

Barriers to implementing simulation

- Faculty training
 - Less than half of respondents in SUPER study (48%) indicated their training was adequate
 - May be too many demands on faculty time
 - Difficult to keep pace w/ current evidence in clinical practice

- Insufficient personnel resources
 - >50% programs in SUPER study report no staff support for sim beyond regularly scheduled faculty hours
 - 19% cite inadequate personnel as reason sim equipment lay idle

Barriers to implementing simulation

- Lack of equipment across the patient life span
 - Lack of child, infant, neonate sim resources
 - Difficult to determine impact of lack of appropriate age-related sim resources on learning outcomes

- Shared resources
 - Programs that share resources, was associated with a significant reduction in their use (have vs... have access)

- Inadequate funding
Trends influencing simulation in EMS education

- Research shows exposure to pts in clinical environment w/ad hoc education sessions no longer sufficient to create competent healthcare practitioners
- Competition for clinical sites
- Limited patient encounters
- Focus on patient safety
- Increasing technology to provide standardized curriculum

Trends influencing sim in EMS education

- Inconsistent clinical opportunities/patient encounters
- Competition w/ other (discipline) students for opportunities
- Sim allows replication of clinical encounters
- Nursing data show sim is effective for end-of-program educational outcomes for graduates
- Progression of critical thinking skills
- Risk reduction
Recommendations

1. Ensure adequate # educated faculty w/ training and expertise in pedagogy of simulation
2. Include operational support staff as part of sim team
3. Budget annually for faculty development in sim . . .
4. Support development of sim leaders in faculty
5. Encourage collaboration w/ educators

Recommendations for EMS Educators

1. Integrate sim into EMS curricula w/ clear connections to student learning outcomes
2. Use evidence-based practices to ensure facilitator competence in all aspects of simulation education
3. Pursue development of expertise as a simulation leader
4. Partner w/ other disciplines to create interprofessional simulation experiences
5. Use valid/reliable instruments for assessment in sim
Areas of simulation use in EMS post-graduate education & training

Simulation in EMS: CPR

• CPR quality and performance
 • Paramedic vs. Paramedic-EMT (no sig diff in quality/errors)27
 • Positioning effects on CPR quality (single rescuer overhead)28
 • Effect of crew size on CPR performance (decr time to intubation w/ incr crew size, no diff in CPR effectiveness)29
• Education and Leadership training
• Devices
 • Evaluation of Autopulse® during extrication of simulated patients (increases compression fraction during extrication/transport)30

Simulation in EMS: Airway

• Evaluation and training
• Evaluation of airway devices
 • Video laryngoscope comparisons in sim difficult airways31
 • Pediatric airway device use
 • ETT w/ and w/o PPE32
• Initial airway training (SIM vs. OR training)33
• Evaluation of practitioner performance

Simulation in EMS: Trauma

- Procedural competency
 - Navy: cadaver vs. lecture training for needle thoracostomy (correctly placed: 75% cadaver vs. 35% lecture group)\(^{34} \)
 - Airway, Intravenous line placement training
 - Military combat casualty care training (live tissue training vs. high-fidelity simulator)\(^{35} \)

- Training and Assessment
 - Incorporation in ATLS courses\(^{36} \)
 - Cognitive skills and error identification

 \(^{36}\) Kim T, Reibling E, Denmark K. Student perception of high-fidelity medical simulation for an international trauma life support course. Prehosp Disast Med 2012

Simulation in EMS: Education

- Evaluating competency
 - Simulation enhanced stroke course (improved recognition and management of stroke pts in sim)\(^{37} \)
 - Simulation as a supplement to field evaluation\(^{38} \)
 - Video observations of simulated scenarios
 - Error evaluation

- Educational courses/disaster training\(^{39} \)
 - Computer/virtual education/training (second life)
 - Interdisciplinary teamwork/military

Simulation in EMS: HEMS

- Simulation to teach/assess intubation for air medical providers (increases airway success rates in sim)\(^{40} \)
 - Other studies demonstrate improved intubation performance w/ sim
 - Evaluation of performance of equipment
 - Accuracy of AED on rhythm interpretation in flight\(^{41} \)
 - Standard stethoscope vs. esthesoscope in flight
 - Direct laryngoscopy vs. video laryngoscopy in flight\(^{42} \)
 - High-fidelity sims in helicopters

Simulation in EMS: Tactical EMS

- Video vs. optical vs. DL by experienced tactical medics
- Impact of sleep deprivation on military naval officers ability to anticipate tactical problems in simulated combat operation (impaired ability to foresee tactical problems)
- Comparison of field tourniquets during application in tactical simulations
- Hemostasis training in Tactical Combat Casualty Care
- Military VR simulations

Simulation in EMS: Disaster

- Simulated biological outbreak → disaster response
 - Ability to identify shortcomings in disaster plans
 - Prehospital mass casualty training
 - Virtual reality + high-fidelity simulation
 - Disaster drills (sim vs. table-top exercises)
 - WMD scenarios
 - Online multiplayer simulation exercises (CBRNE)

Simulation at UC Irvine
Sim in EMS take home points

• Simulation is an innovative educational delivery method that can add value to learners if correctly implemented

• The major benefits of simulation are:
 • Feedback
 • Repetition of practice
 • Curriculum integration

• Simulation in EMS is in its infancy and primed for advances in education and research