Challenges in Planning for a Burn Disaster

Tina L. Palmieri MD, FACS, FCCM
President American Burn Association
Director University of California Davis Firefighters Burn Center
Assistant Chief of Burns, Shriners Hospitals for Children, Northern California

Objectives

- Understand epidemiology of burn injury
- Describe how burn mass casualty care differs from trauma care
- List the challenges in supplies, personnel, and equipment in burn care
- Describe how the American Burn Association is addressing these needs
Burn Mortality: The Past*

*Rose and Herndon 1997.

What is the Current LD50 for Burns?

American Burn Association National Burn Repository 2012.
Does Age Make a Difference?

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>0.1-9.9</th>
<th>10-19.9</th>
<th>20-29.9</th>
<th>30-39.9</th>
<th>40-49.9</th>
<th>50-59.9</th>
<th>60-69.9</th>
<th>70-79.9</th>
<th>80-89.9</th>
<th>>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birth</td>
<td>0.3</td>
<td>1.8</td>
<td>6.9</td>
<td>9.4</td>
<td>24.7</td>
<td>28.8</td>
<td>44.9</td>
<td>50.0</td>
<td>70.4</td>
<td>91.7</td>
</tr>
<tr>
<td>1-1.9</td>
<td>0</td>
<td>0.4</td>
<td>0.6</td>
<td>2.7</td>
<td>8.5</td>
<td>16.7</td>
<td>28.6</td>
<td>20</td>
<td>25.0</td>
<td>75</td>
</tr>
<tr>
<td>2-4.9</td>
<td>0.1</td>
<td>0.2</td>
<td>0.8</td>
<td>5.3</td>
<td>7.9</td>
<td>19.7</td>
<td>9.3</td>
<td>25</td>
<td>60</td>
<td>45.5</td>
</tr>
<tr>
<td>5-15.9</td>
<td>0.1</td>
<td>0.3</td>
<td>1.1</td>
<td>2.3</td>
<td>4.3</td>
<td>5.1</td>
<td>11.6</td>
<td>13.8</td>
<td>49</td>
<td>60</td>
</tr>
<tr>
<td>16-19.9</td>
<td>0.1</td>
<td>0.4</td>
<td>1.1</td>
<td>3.3</td>
<td>5.2</td>
<td>9.4</td>
<td>14.3</td>
<td>18.5</td>
<td>58.3</td>
<td>66.7</td>
</tr>
<tr>
<td>20-29.9</td>
<td>0.2</td>
<td>0.6</td>
<td>1.6</td>
<td>6.2</td>
<td>12.4</td>
<td>19.5</td>
<td>25.2</td>
<td>43.5</td>
<td>60</td>
<td>77</td>
</tr>
<tr>
<td>30-39.9</td>
<td>0.3</td>
<td>0.9</td>
<td>2.9</td>
<td>6.7</td>
<td>11.0</td>
<td>25.3</td>
<td>34.7</td>
<td>51.1</td>
<td>68.9</td>
<td>94.3</td>
</tr>
<tr>
<td>40-49.9</td>
<td>0.4</td>
<td>1.5</td>
<td>4.8</td>
<td>10.9</td>
<td>23.1</td>
<td>42.3</td>
<td>37.6</td>
<td>62.9</td>
<td>74.7</td>
<td>91.0</td>
</tr>
<tr>
<td>50-59.9</td>
<td>0.8</td>
<td>3.7</td>
<td>10.1</td>
<td>21.2</td>
<td>39.7</td>
<td>53.0</td>
<td>67.8</td>
<td>81.6</td>
<td>87.8</td>
<td>89.6</td>
</tr>
<tr>
<td>60-69.9</td>
<td>2.0</td>
<td>6.5</td>
<td>19.1</td>
<td>42.9</td>
<td>52.5</td>
<td>67.0</td>
<td>85.7</td>
<td>90.2</td>
<td>100</td>
<td>89.6</td>
</tr>
<tr>
<td>70-79.9</td>
<td>4.0</td>
<td>15.4</td>
<td>34.0</td>
<td>59.2</td>
<td>74.5</td>
<td>84.4</td>
<td>88.0</td>
<td>92.9</td>
<td>90.0</td>
<td>90.6</td>
</tr>
<tr>
<td>80+</td>
<td>6.9</td>
<td>28.7</td>
<td>63.9</td>
<td>77.2</td>
<td>89</td>
<td>96.7</td>
<td>88.7</td>
<td>93.5</td>
<td>97.1</td>
<td>100</td>
</tr>
</tbody>
</table>

American Burn Association National Burn Repository 2012

Burn Mass Casualties Differ from Trauma

- **Burn knowledge**
- **Resuscitation**
- **Wounds**
- **Resource utilization**
 - **Acute**
 - **Long term**
- **Cost**
Initial Burn Evaluation

- Initial estimates of burn size inaccurate
 - Average estimate wrong by 20%*
 - Both over and underestimation
 - Impacts both adults and children
- Burn surgery not requirement for training
- Burn care centralized
- Lack of exposure=errors

Resuscitation

- Burns require high fluid volumes in resuscitation
- The good news: we have a formulas
- The bad news: multiple resuscitation formulas

<table>
<thead>
<tr>
<th>Formula</th>
<th>First 24 Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parkland</td>
<td>4 ml/kg/TBSA LR;½ in first 8 hr</td>
</tr>
<tr>
<td>Modified Brook</td>
<td>2ml/kg/TBSA LR;½ in first 8 hr</td>
</tr>
<tr>
<td>Warden</td>
<td>4 ml/kg/TBSA 180mEq/L NaCl;½ in 1st 8 hr</td>
</tr>
<tr>
<td>Hypertonic Saline</td>
<td>2 ml/kg/TBSA 250 mEq/L NaCl</td>
</tr>
</tbody>
</table>
The Problem: Everyone Has Their Own Way…

Resuscitation

- All formulas rely on burn size and weight estimates
- How can we do this in the field during disaster?
- Knowledge of how to use formula an issue
 - 87% of trained emergency room workers could not calculate fluid rate for a major burn*
- Burns have a variable response to resuscitation; formulas accurate only 30-40% of time

What about the wounds?

History of Burn Wound Excision: The Wait and See Method

- Dressing changes, topical antimicrobial agents until eschar separates
- Grafting with split thickness skin graft after granulation tissue develops (3-5 weeks)
- The problems:
 - Sepsis
 - Long hospital stays
 - Joint contractures
 - Hypertrophic scars
 - Patients were dying (mortality of 50% for 30% burn)
Benefits of Early Excision

- Improves survival*
- Decreases hospital length of stay*
- Decreases bacterial colonization in burn wound and graft site**
- Decreased number of septic episodes
- Attenuates systemic inflammatory response syndrome and release of inflammatory mediators

What Will Be Standard of Care in Disaster?

- Most centers will not be able to perform early excision
- Will need to rely on dressing changes
- We need the ability to care for wounds better than before or mortality will increase
- Dressing changes need lots of resources
 - People to do the work
 - Pharmaceuticals: topical agents, narcotics, antibiotics, sedatives
 - Supplies: bandages, netting
Problem with Early Excision in Disaster

- Difficult to determine burn extent
- Lack of excision and grafting expertise
- Resources needed intensive:
 - Cadaveric skin, xenograft, skin substitutes for temporary coverage
 - Blood products
 - Operating room
 - Personnel
 - Equipment: dermatomes, meshers, staplers, tourniquets
 - Supplies: dressings, staples
 - Pharmaceuticals

So, What Do We Need? To Agree

- Educate on initial care
 - Burn size, depth determination
 - Resuscitation and ventilation parameters
 - Development of electronic teaching modules/algorithms
- Uniform standard of care
 - Wound management
 - Surgical intervention
- Triage
 - Who and how are going to do it
Resources Needed

- People, people, people
- Equipment
- Dressing supplies
- Pharmaceuticals
- Transport mechanisms

Who is needed to care for a burn patient?

- EMS
- Physician/surgeon
- Bedside nurse
- Respiratory therapist
- Occupational therapist
- Physical therapist
- Dietician
- Pharmacist
- Psychiatrist/psychologist
- ER physician
- Anesthesiologist
- Surgical nurse
- Dressing technicians
- Radiology technicians
- Microbiology technicians
- Janitorial staff
- Physiatrist
- Chaplain
What supplies are needed for a burn disaster?

- Lots….
- Dressings
 - Dry gauze (multiple sizes), non-adherent, antimicrobial
- Something to hold dressings on with
 - Netting, ace wraps, spandex
 - Twill ties for intubated face
- Cleaning supplies
 - Soaps, water, astringents for room cleaning
- Garbage bags
- Linen

What do all those supplies cost?

- One adult burn unit experience
- Inpatient burn unit: 12 beds
 - >$1 million/year
- Outpatient supplies/year
 - $330,000
Pharmaceuticals

- IV fluids
- Enteral nutrition
- Narcotics
- Sedatives
- Topical antimicrobial agents
- IV antibiotics
- Dvt prophylaxis
- Dressings?
- Benzodiazepines
- Blood and blood products
- Vitamins
- Insulin
- Anabolic agents
- Inhalation agents
- Vasoactive agents

Equipment

- Monitors
 - Pulse oximetry, EKG, blood pressure
- Ventilators
- IV equipment
 - Pumps, tubing, iv catheters
- Wound cleaning/debriding instruments
 - Staple removers, scissors, knives
- Operating room stuff
 - Watson, goulxian, dermatomes, meshers, staplers, donor site dressings
- Therapy equipment
Why should you care about burn disasters?

- Burn injury likely to be part of terrorist act
 - Cheap, effective way to impact many people
 - Pentagon bombing, 9-1-1
- Burn injury in industrial accidents
 - 0.2-0.3% cause of days away from work*
 - Burn 1.6/10,000; chemical burn 0.5/10,000**
- Burn injury frequent in war
 - Traditionally 15% of battlefield casualties have a burn

In a Disaster, Burns Are Coming to You…and They Will Be There a While

- Injured burn patients brought to ER regularly
- In disaster, combination of “walking wounded” and those transported
- In U.S. only 1800 burn beds, of which 60-80% occupied
- Resource requirement>availability
- Transport delays of at least 72 hours
- Need to engage in burn disaster planning process
How is the ABA Addressing the Needs?

- One step at a time…

National Burn Repository

- Burn registry made available to burn centers for no charge in 1992
- ABA partnered with the American College of Surgeons in 1993 to develop the NATIONAL TRACS®/ABA Burn Registry
- Original data collected in Foxpro™ (DOS based)
- Free to ABA member users on two conditions:
 - users had to complete a tutorial program on data entry
 - must sign a licensing agreement to use the modules solely within their institutions
National Burn Repository History

- Initial emphasis was on obtaining data and maintaining center confidentiality
- Growth of NBR over time: 6,400 patients in 1994 to 54,000 patient admissions reported in 2002
- Currently more than 85 centers have contributed total of >300,000 records

What We Have Done With the NBR

- Multiple papers on burn injury
- Foundation for more than $4 million in Department of Defense funded research
- Development of disaster triage diagram
- Used as the foundation for power calculations for multicenter trials
Advanced Burn Life Support (ABLS)

- National course for the treatment of burn injuries
- Initial burn management/assessment
 - Inhalation injury
 - Resuscitation
 - Wound care
- Special topics in burns
 - Children
 - Chemical injury
 - Electrical Injury
 - Disaster preparedness
ABLS: Three Options

- **ABLS provider course live**
 - Live hands-on course designed to provide the “how to” of emergency care of the burn patient.
- **ABLS NOW**
 - Online course providing burn injury training and education for busy first responders and health care providers
- **ABLS Handbook**
 - CD go-to-reference guide (complete provider course and slides) for comprehensive information on immediate care through the first 24 hours post burn injury.

Benefits of ABLS Provider Course Live

- Immediate care of the burn patient up to the first 24 hours post injury
- ABLS Provider Handbook Material
- Course content appropriate for all disciplines
- Application of concepts through case study discussions and assessment of simulated burn patient
- Written exam and practical test
- CEU and CME credits given upon completion of course
ABLS Now® Benefits

- Knowledge for immediate care of the burn patient up to the first 24 hours post injury
- ABLS Provider Handbook® Material
- Course content appropriate for all disciplines
- Lecture and case study slide modules presented by burn experts
- Self study questions for exam preparation within each module
- Online exam
- CEU and CME credits upon completion of course

ABLS Handbook Benefits

- Knowledge for immediate care of the burn patient up to the first 24 hours post injury
- Course content appropriate for all disciplines
- Quick and handy tool for specific burn injury questions
- Reference guide for immediate burn care up to the first 24 hours post burn injury
ABLS Activity 2011

- U.S.: 162 provider courses
 - 310 physicians; 3137 nurses, PAs, therapists, EMTs, paramedics
- International ABLS: 15 provider courses
 - 125 physicians; 89 non-physicians
- Instructor Courses: trained 700
- Grant funded ABLS: CA, Del, GA, ID, KS, KY, MI, MS, MO, NY, NC, PN, TN, TX, VA, WY
- Military ABLS: 11 provider courses, 3 instructor

ABLS 2012

- New ABLS courses were introduced at the 44th Annual Meeting in Seattle
- Through September 30, 2012:
 - 126 Provider courses with 3,500 participants
 - 11 Provider, 3 Instructor courses in military
 - 5 Provider courses overseas: Greece, Italy, Japan
 - Federal/State grant-funded courses: 16 states
 - $90,000 shared revenue provided to burn centers
ABA Burn Regions

Regional Efforts

- Each region tasked with development of disaster plan
- Yearly tabletop disaster exercises
- Participation in local and regional disaster exercises
- Development of communication lines for disaster
 - Phone trees
 - Points of contact
 - Transfer agreements
Collaboration with the Department of Health and Human Services

- Weekly burn bed availability reporting: BARTS
- Development of burn triage plans
- Collaboration for contents of disaster stockpiles
- Training of non-burn personnel
- Tabletop exercises at annual American Burn Association meeting

What Should We do to Improve the Situation?

- Collaboration
 - Multiple stakeholders: surgeons, pre-hospital providers, emergency providers, Department of Defense, transportation
- Matching needs with those who can meet those needs
- Plan for fulfilling those needs
- Taking action on the plans
Conclusions

- Burns are high intensity, high resource requirements for a long time
- In a disaster will need to modify existing paradigms of burn care
- Development of new treatment strategies, new products for burn care essential for appropriate response
- Collaboration is the key

Questions?